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I. INTRODUCTION

Several authors have considered the problem of best approximate solutions
of nonlinear differential equations [1,2,4,5]. Recently, many of these
results have been extended to integral or integro-differential equations [6, 8].
In the case of differential equations, a successive approximation method has
been developed to find best approximate solutions [3, 7]. This method, being
based on the Remes algorithm, is too inefficient for use with integral
equations. The objectives of this paper are to modify the algorithm of [3, 7]
for use on integral equations, to use the successive approximations to prove
an existence theorem for solutions of Volterra integral equations, and to
provide error estimates for the successive approximations.

2. PRELIMINARY DEFINITIONS

Consider the Volterra integral equation

x(t) = F(t) +rG(t, s, xes)) ds (2.1)
o

for t E / = [0, u], where F and G are continuous on / and /2 x R, respec­
tively.

For k = 0, 1, 2, ... , d~fine the functions

2 (2t - u)
1>k+l(t) = (7TU)l/2 Tk U '

= ( ;u )1 /2 To ( 2t :- u),
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k oF- 0,

k = 0,
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where Tk is the kth degree Chebyshev polynomial. From the relation
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m # n,
n = m # 0,
n = m = 0,

we see that the set {1>k}':~l is orthonormal on I with respect the inner product

fa /(t) g(t)
<f, g) = 0 (I - ((2t _ a)/a)2)l/2 dt.

Our approximating set will be

Gk = span{1>1' 1>2"'" 1>k}'

For x E C(I), we define the operator

L[x](t) = F(t) +rG(t, s, x(s)) ds
o

and' the norms
II x II = max I x(t)1

I

and

We note that

(
a7T )1 /2

II xl12 ~ -2- II xii.

3. SUCCESSIVE ApPROXIMATIONS

(2.2)

As a first approximate solution of (2.1) from Gk , we choose P1,k(t) =
C11>1(t) so that P1,k(O) = F(O). Thus we set C1= (7Ta/2)t F(O). Then for n ::> 1
and Pn.k E Gk given, we select Pn+l,k E Gk to solve the minimization problem

Since L[ Pn.k] is a known continuous function defined on I, we set
Pn+l.k= L:~~1 <1>; , L(Pn.k]) 1>;. This process defines a sequence
{Pn.k}:~l C Gk .

4. CONVERGENCE OF THE SEQUENCE {Pn.k}:=l

Set K = II FII + 2 and define Bk = {p E Gk : Ii p II ~ K}. Since G is con­
tinuous, there is a constant M satisfying [G(t, s, x)1 ~ M whenever
(t,S,X)EJ2 x [-K,K].
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We now impose a condition on F and G to ensure that the sequence
{Pn,IJ;;'=1 will have a convergent subsequence for u (independent of k)
not too large.

Condition I. Suppose F satisfies the Dini-Lipschitz condition

11m w(F; [0, u]; 8) log 8 = 0,
R··O

where w is the modulus of continuity of F (see [9, p. 14]). Further suppose
that

w(G(', Xl' x 2);[0, u]; 8) log 8

converges uniformly on I x [-K, K] to zero as 8 tends to zero.
Define the error function

en.k = Pn+l,k - L[Pn.le].

LEMMA 1. The/unction en,k satisfies

Proof Transforming the independent variable, we have

[,I e_," = max IP ~l I (' u(t + I) ) - L[p Ie] ( u(t +J)_jl
,," [-1,1] rI,,' 2, n. 2'

Let H(t) = L[Pn.d(u(t -1 1)/2) and p(t) = Pn+u(u(t T 1)/2). Then there
. Ie-I

are constants ai (I = 0, I, ... , k -- I) so that p(t) = 2:i~O aJi(t). From the
way that Pn+U was chosen, it is clear that P is the best least-squares approxi­
mation to H on the interval [-I, 1] by Chebyshev polynomials. If we let
q represent the best uniform approximation to H on the interval [-I, I]
by polynomials of degree at most k - 1, we have (see [9, p. 61])

!I en,1e II = I~~~l I p(t) -- H(t)!

:S; [4 + 4
2

log(k - I)] max I q(t) - H(t)!
7T [-1,1]

= [4 +- 4
2

log(k - 1)] max Iq ( 2t -- U) - L[Pn dl.
7T [0 ,a] U '

Since q«2t - u)lu) is the best uniform approximation to L[Pn,d on the inter­
val [0, u] by polynomials of degree at most k - 1, we use Jackson's theorem
[9, p. 22] to conclude that

II en.Ie!1 :S; [4 +- :2 log(k - 1)] 6w (L[Pn.Ie]; [0, u]; 2(k ~1))'
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LEMMA 2. There is a positive number ii, independent of k, such that 0 :s:; ii
implies that

for all p E Bk •

Proof We first consider the modulus of continuity of L[p]. Let t], t 2 E I
with It] ~ t2! :s:; o/(2(k - I)) and let s* E I satisfy

G(t] , s*, p(s"'» - G(t2 , s*, p(s*»1

= max I G(t], s, pes)) - G(t2' s, p(s»I.
sET

Then

L[p)(t]) - L[P)(t2)]

:e:::; ] F(t]) - F(t2)[ + I(' G(t] , s, pes»~ ds - .( G(t2 , s, pes»~ ds I
= I F(t]) -- F(t2):

I
I, I, I

T f (G(t], s, pes»~ - G(t2, s, pes»~ ds + f G(t2 , s, pes)) ds
o f2

::.::; ) F(t]) - F(t2)I + t] [ G(t] , s*, p(s*» -- G(t2 , s*, p(s*»1

-+- I t] - t2 I M.

Taking suprema, we have

w (L[p]; [0,0]; 2(k ~ I))

< w (F; [0,0]; 2(k ~ 1))

+ ow (G(-, s*, p(s*»; [0,0); 2(k ~1)) + 2(k ~ If M

:s:; (; + 1) w (F; [0, 0]; k ~ I )

+ a (; + 1) W (G(o, s*, p(s*)); [0, a]; k _~ 1 ) + 2(k ~_ 1) M.

Tn the above inequality we employed the fact [9, p. 15] that for 0 > 0,
w(f; [a, b); OE) :s:; (0 + 1) w(f; [a, b); E-). From condition 1 and the fact that
the left member of above inequality is monotone increasing in a, we have

iT; w (L[p); [0, a']; 2(k a~ I) ) log(k - 1) = 0
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uniformly for a' E [0, a]' Also, using the continuity of F and the bound on G,
we have

~I:\J w (L[p]; [0, a]; 2(k ~_ I») = °
for k ;;:;:0 2 and for each p E B" . This limit is uniform in p E B" .

We now choose N so that k ;;:;:0 N and a' E [0, a] implies

[
4 ]' a' )4 T 7T2 log(k -- I) W (L[p]; [0, a']; 2(k ~-=l)

For k ~~ 2, 3, ... , N - I, choose ()" such that a ~ ()" and p E B" implies

[
4 ]. a '

6 4 '~';'2 log(k - I) w (L[p]; [0, a]; 2(k _ I») (4.1 )

Then if ii = min{()l , ()2 , ... , ()N-l} and a ~ ii, we have inequality (4.1)
holding for all k ;;:;:0 2 and for all p E B" .

We now impose the final condition to insure that the sequence of successive
approximations possesses a cluster point.

Condition 2. Let a satisfy aM ~ I and suppose a is sufficiently small
that (4.1) holds for each p E B" , k ;;:;:0 2.

THEOREM 1. If conditions I and 2 hold, then the sequence {Pn.d:~l has
a convergent subsequence for k ;;:;:0 2.

Proof We will use iduction to show that {Pn.k}~~l ~ B", a uniformly
bounded subset of a k-dimensional linear space. Clearly Pl." = F(O) E B" .
Suppose Pn.k E B". Since Pn+l.k ~~ L[Pn,d + e/r, we can use Lemmas 1
and 2 and conditions I and 2 to conclude that

Pn+],I;1 c:; !! L[Pn,kJil + !I e"

~ !iF + aM + I

!!F!l'+ 2

and consequently Pn+],I; E B". Since B" is compact, the sequence {Pn,"::",.l
must have a convergent subsequence.

THEOREM 2. Suppose G satisfies the following local Lipschitz condition.
For each B > 0, there exists An > °such that

whenever tEl, S EI, I Yl! ~ B, and I Y2 I B. Let ,\ be the Lipschitz constant
corresponding to K '! F + 2. Then if conditions I and 2 hold and if
21 / 2Akii < I, the sequence {Pn,d:d converges.
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Proof Define the mapping T as follows. Given P E Gk , let T(p) solve the
approximation problem

inf !I q - L[p ]112 .
QEGk

Thus
k

T(p) = L <c?i, L[p]) c?i'
i=l

We now show that T is a contraction mapping. Let p, q E Bk • Using the
Cauchy-Schwarz inequality and inequality (2.2), we have

k

:1 T(p) - T(q)l! = ilL <c?i, L[p] - L[q]) c?i Ij
1.=1

~ (2kj(7TU)1/2) II L[p] - L[q]112

~ 21
/
2k :1 L[p] - L[q]I!

~ 21 / 2)'ku lip - q II.

Since 21 / 2),ku < I, the mapping T is a contraction and since Gk is a com­
plete metric space, T has a unique fixed point. Furthermore this fixed point
is the limit of the sequence {Pn.d::'d .

THEOREM 3. If the sequence {Pn.hJ::'~l converges to Pk , then h solves the
minimization problem in/PECk lip - L[Pk]112 .

Proof Letting n -+ c:f) in the equation

k

Pn+],k = L <c?i, L[Pn.k]) c?i
i=l

yields
k

h = L <c?;, L[Pk]) c?i'
i=l

It should be noted that a u independent of k may be found satisfying the
conditions of Theorem 1. This ensures that the sequences {Pn.k}~~l

(k = 2, 3,...) each have a cluster point for a fixed u.

Throughout the remainder of this paper, we assume the following.

Condition 3. The sequences {Pn.k}:~l (k = 2,3,...) actually converge to
Pk (k == 2,3,...), respectively, for some fixed u.
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5. EXISTENCE OF SOLUTIONS OF (2.1)

for tEl.

(5.1 )

Define the error function

THEOREM 4. If conditions I and 3 hold, then limk_oo ek = O.

Proof From Theorem 3 and the proof of Lemma 1, we see that

Ii ek Ii ~ (4 + (4/172
) log(k - 1)) 6w(L[Pk); [0, a); a/(2(k - I))).

The result now follows from condition I and a slight modification of the
proof of Lemma 2.

THEOREM 5. rr conditions 1 and 3 hold, then the sequence {pd~"~l has a
subsequence which converges uniformly on I to a function y. Moreover, the
function y is a solution of (2.1).

Proof Define the functions

vit) = rG(t, s, Pk(S)) ds
o

Since G is uniformly continous on j2 X [-K, K), the family {Vk};;'~l is
uniformly bounded and equicontinuous. By Ascoli's theorem, there is a
subsequence {VlcW}~~l which converges uniformly on I to some function v.
Set y = v + F and consider the equation

Pkw(t) =~ F(t) + CG(t, s, Pk(Il(S)) ds
'0

Applying the triangle inequality, we find that

Now letting 1--+ C/J and using Theorem 4, we have

limi Pldll-- J' O.
11'.1,'

Finally, letting 1--+ C/J in (5.1) we see that y is a solution of (2. I).

6. ERROR ESTIMATES AND CONVERGENCE

Let y be the solution of (2.1) given by Theorem 5. Combining the equations

.f

y(t) F(t) I G(t, s, yes)) ds
• 0
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and

h(t) = F(t) +rG(t, s, h(s)) ds + ek(t),
o

we have

yet) - Pk(t) = r(G(t, s, yes)) - G(t, s, pes))) ds - ek(t).
o

Since each h E B k , we have II h II ~ K for each k. Thus Ii y il ~ K and

I yet) - Pk(t)1 ~r,\ I yes) - h(s)1 ds + II ek II
°

347

once again assuming the local Lipschitz condition stated in Theorem 2.
Gronwall's inequality implies

II Y - Pk II ~ II ek II exp('\a).

Combining the above inequality with Theorem 4, we now see that the
sequence {h};~l actually converges to y. We summarize this in the following
theorem.

THEOREM 6. If conditions 1 and 3 and the local Lipschitz condition stated
in Theorem 4 hold, then the sequence {Pk};~l converges uniformly on I to a
solution y of (2.1).

7. NUMERICAL EXAMPLES

In each of the following examples, the approximate solutions from Gk are
expressed as polynomials.

EXAMPLE J. x(t) = 1 + f~ xes) ds, t E [0, 1]. After 12 iterations,

pit) = 0.9994 + 1.0169t + 0.4208t 2 + 0.2805t3
•

The solution is yet) = exp(t) and max[Q,l] I P4(t) - exp(t)1 = 0.0005. In this
elementary example, the Picard iterates can easily be computed. The fourth
Picard iterate is qit) = 1 + t + 0.5t 2 + 0.1667t 3 and max[O,l] Iqit) ­
exp(t) I = 0.05.

EXAMPLE 2. x(t) = 1 + t + f~ (t - s) e-Sx 2(s) ds, t E [0, 1]. After seven
iterations,

pit) = 0.9993 + 1.0174t + 0.4204t 2 + 0.2806t 3
•
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Again, the solution is exp(t). The maximum error is

max Ipit) - exp(t)1 = 0.00066.
[0,1]

The integral equation in this example may be written as the second-order
differential equation

t E [0, 1],

with initial conditions x(O) = I and x'(O) = 1. Applying the SAS algorithm
[3], we find that the SAS of degree 3 or less is

P4*(t) = I + t + 0.4422t 2 + 0.2916t 3•

The maximum error is

max IP4*(t) - exp(t)1 = 0.016.
[0,1]

EXAMPLE 3. x(t) = F(t) + f~ x 2(s) ds, t E [0, 1], where

F(t) = t,

= 0.25,

The solution of this equation is

o ~ t ~ 0.25,

0.25 < t ~ 1.

y(t) = tan t,

= 1/(4.1663 - t),

After seven iterations, we have

o~ t ~ 0.25,

0.25 < t ~ 1.

P4(t) = -0.0059 + l.36l8t - 2.0782t 2 + 1.0456t3•

The maximum error is

max Ipit) - y(t)l = 0.03.
[0,1] ,

The larger error is expected due to the lack of smoothness in F. The maximum
error of 0.03 is assumed at approximately t = 0.25. Throughout most of
the interval, the error is much smaller, e.g., SUP[O,l]-[O.1.0.3] IP4(t) - y(t)1 =
0.Ql5.

8. CONCLUSIONS

The method of successive approximation, based on best least-squares
approximation, provides computable continous approximate solutions for
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the Volterra integral equation. In addition, the successive approximations
have been used to verify an existence theorem for solutions of Volterra
integral equations. Although condition 3 appears difficult to check, no
example has been found which violates this condition. In fact, it is con­
jectured that if {Pn.k}~~l converges for some a, then {Pn.k+l};:'_l also converges
for the same a. The SAS algorithm [3] depends on a condition similar to
condition 3.
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